Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Viegas, Domingos Xavier (Ed.)Data likelihood of fire detection is the probability of the observed detection outcome given the state of the fire spread model. We derive fire detection likelihood of satellite data as a function of the fire arrival time on the model grid. The data likelihood is constructed by a combination of the burn model, the logistic regression of the active fires detections, and the Gaussian distribution of the geolocation error. The use of the data likelihood is then demonstrated by an estimation of the ignition point of a wildland fire by the maximization of the likelihood of MODIS and VIIRS data over multiple possible ignition points.more » « less
-
Assimilation of data into a fire-spread model is formulated as an optimization problem. The level set equation, which relates the fire arrival time and the rate of spread, is allowed to be satisfied only approximately, and we minimize a norm of the residual. Previous methods based on modification of the fire arrival time either used an additive correction to the fire arrival time, or made a position correction. Unlike additive fire arrival time corrections, the new method respects the dependence of the fire rate of spread on diurnal changes of fuel moisture and on weather changes, and, unlike position corrections, it respects the dependence of the fire spread on fuels and terrain as well. The method is used to interpolate the fire arrival time between two perimeters by imposing the fire arrival time at the perimeters as constraints.more » « less
-
Viegas, Domingos Xavier (Ed.)In this paper, we present an integrated wildland fire forecasting system based on combining a high resolution, multi-scale weather forecasting model, with a semi-empirical fire spread model and a prognostic dead fuel moisture model. The fire-released heat and moisture impact local meteorology which in turn drives the fire propagation and the dead fuel moisture. The prognostic dead fuel moisture model renders the diurnal and spatial fuel moisture variability. The local wind and the fuel moisture variation drive the fire propagation over the landscape. The sub-kilometer model resolution enables detailed representation of complex terrain and small-scale variability in surface properties. The fuel moisture model assimilates surface observations of the 10h fuel moisture from Remote Automated Weather Stations (RAWS) and generates spatial fuel moisture maps used for the fire spread computations. The dead fuel moisture is traced in three different fuel classes (1h, 10h and 100h fuel), which are integrated at any given location based on the local fuel description, to provide the total dead fuel moisture content at the fire-model grid, of a typical resolution of tens of meters. The fire simulations are initialized by a web-based control system allowing a user to define the fire anywhere in CONUS as well as basic simulation properties, such as simulation length, resolution, and type of meteorological forcing for any time meteorological products are available to initialize the weather model. The data is downloaded automatically, and the system monitors execution on a cluster. The simulation results are processed while the model is running and displayed as animations on a dedicated visualization portal.more » « less
An official website of the United States government
